Trigonometric equation can be solved using trigonometric identities and find the value of x/radian/degree
Topic : Trigonometric Equation
In Trigonometric functions - Sine, Cosine, tan's value are found as explained below.
Problem : Solve tan 2x = 3 tan x and find x in degrees
Solution :
tan 2x = 3 tan x
we have tan 2x = 2 tan x/1 - tan2 x
2 tan x/1 - tan2 x = 3 tan x
2 tan x = 3 tan x (1 - tan2 x)
2 tan x = 3 tan x - 3 tan3 x
3 tan3 - 3 tan x + 2 tan x = 0
3 tan3 - tan x = 0
or tan x (3 tan2 x - 1) = 0
tan x = 0 or 3 tan2 - 1 = 0
x = 0 or tan2 = 1/3
x = 0 or tan x = ± 1/√3
x = 00
or
tan x = +1/√3 ; x = 300 or x = 1800 + 300 = 2100 and
if x = -1/√3 ; x = 1800 - 300 = 150 or 3600 - 300 = 3300
So x = 00, 300, 1500, 2100, 3300
If required values can be converted into radians.
For more help write to our trigonometric help.
No comments:
Post a Comment